Станом на сьогодні у нас: 141825 рефератів та курсових робіт
Правила Тор 100 Придбати абонемент Технічна підтримка
Скористайтеся пошуком, наприклад Реферат        Грубий пошук Точний пошук
Вхід в абонемент



обчислення руху Меркурія, передавання тяжіння через порожнечу, він визнає необхідність першого поштовху. На що "тірокляті питання" старої механіки дала відповідь загальна теорія відносності.

Математичне узагальнення

Математичним узагальненням, які дозволили сягнути злету механічної концепції світу, були поняття похідної, диференціала й інтеграла — основи для аналізу нескінченно малих. Створюючи аналіз нескінченно малих, Ньютон виходив з поняття похідної. її прообразом була змінна швидкість тіла, що рухається під дією сили.

Якщо тіло рухається за інерцією, то рух відбувається за законом, що пов'язує положення тіла з часом, -тобто йдеться про лінійну залежність цього положення від часу. Швидкість на всьому відрізку постійна, вона збігається зі швидкістю в точці, і шлях тіла ми визначаємо, помноживши час руху на цю незмінну швидкість. Якщо ж тіло рухається під впливом незмінної сили, то постійною є не швидкість, а прискорення.

Ньютон узагальнює поняття шляху, пройденого частинкою, і її швидкості й уводить поняття флюенти (змінної) і флюксії (швидкості зміни флюенти, тобто похідної цієї змінної). У Ньютона не було виразного уявлення про флюксії як про границю відношення залежної змінної до її аргументу. Але Ньютон указав шлях, що веде до такого уявлення, ввівши поняття, які допомогли сформулювати концепцію нескінченно малих змінних величин і похідної як їх граничного відношення. Граничне відношення, наприклад граничне відношення шляху до часу, тобто швидкість, з абсолютною точністю характеризує рух у даній точці й у даний момент часу. Констатація швидкості в точці й узагалі будь-якого граничного відношення змінних величин не пов'язана з яким-небудь компромісним ігноруванням справжньої довжини величин, нескінченно малі зберігають свою довжину, і ми визначаємо похідну не як відношення цих змінних величин, а як границю, до якої наближається це відношення, коли змінні прямують до нуля.

Ньютон обрав шлях, що веде до уявлення про нескінченно малі як змінні величини і до поняття границі, уводячи "перші відношення" величин, що зароджуються, і

"останні відношення" зникаючих величин. Ці поняття фігурують у "Міркуваннях про квадратури кривих" і в "Началах". Тут мова йде аж ніяк не про "останні відношення" величин у той момент, коли ми визнаємо їх достатньо малими, щоб знехтувати ними, мова йде про "останні відношення", до яких змінні величини прямують, не досягаючи їх, тобто про граничні відношення.

У роботі "Метод флюксій і нескінченних рядів" Ньютон розглядає дві задачі — визначення флюксій за флюентами, наприклад, миттєвої швидкості за пройденим шляхом (тобто про задачу диференціювання), і визначення флюент за флюксіями, наприклад, шляху за швидкістю (тобто про задачу інтегрування).

Ньютон увів позначення для похідних: першу похідну від величини X він позначив X, другу — X. Таким чином, якщо X — координата частинки, то її швидкість X, а прискорення X. Для похідних за часом ці позначення застосовуються й у наш час. Запропоновані математичні поняття являють собою узагальнення механічних категорій. Відповідно, незалежною змінною може бути будь-яка величина, якщо розглядати відношення до неї всіх інших величин, які можуть змінюватися як рівномірно, так і довільно. Подібне узагальнення сприяє становленню нових фізичних понять. Уявімо собі, що незалежною змінною є простір, наприклад, відстань від центра тяжіння, і нам потрібно обчислити силу тяжіння в кожній точці. У наш час відомо, що розв'язання подібних задач пов'язане з уявленням про силове поле — простір, де кожній точці відповідає певне значення сили, що діє на одиничну масу. Ми знаємо також, що подібна формальна континуалізація тяжіння, що заповнює простір суто математичними величинами, перетворилася згодом на картину матеріального середовища, в якому сила передається від точки до точки (після того, як було доведено існування скінченної швидкості поширення взаємодії). Таким чином, математичне узагальнення механіки дальньої дії сприяло створенню фізики близької дії.

Ньютонівська оптика

Фізичні ідеї, що лежать в основі механіки Ньютона, висловлені переважно в його роботах з оптики. З погляду загальної історії природознавства, оптика Ньютона має першорядне значення, тому що в ній знаходимо найглибші фізичні, часто кінетичні, іноді суто картезіанські за своїм духом корені класичної механіки.

Вихідним пунктом оптичних експериментів Ньютона були потреби практики. Перші великі телескопи мали сферичну й хроматичну аберацію. Щоб усунути цей недолік, Ньютон запропонував замінити рефрактори відбивальними телескопами — рефлекторами. У 1668 р. він побудував велику модель рефлектора, а три роки потому створив порівняно великий відбивальний телескоп. При цьому Ньютон виявив ебе як надзвичайно винахідливий конструктор і технолог.

Вирішення проблеми хроматичної аберації започаткувало всі наступні оптичні дослідження Ньютона. Безпосередній об'єкт телескопа — зоряне небо — привернуло увагу Ньютона до основних задач небесної механіки й астрономії. У виконанні Ньютона експеримент став настільки точним і плідним знаряддям пізнання, що вся попередня експериментальна фізика здається передісторією ньютонівських робіт. У результаті проведених досліджень Ньютон відкрив явище розкладання на спектр білого світла, коли воно проходить через призму, вимірявши величину заломлення променів різних частин спектра. При цьому Ньютон розрізняв основні кольори й складні вторинні кольори. Основні кольори утворюють спектр, який включає червоний; жовтогарячий, жовтий, зелений і т.д., і величезну кількість проміжних відтінків.

Близькі один до одного ділянки спектра дають у поєднанні проміжні кольори: жовтий із синім — зелений, червоний із жовтим — жовтогарячий і т.д. Кольори, що лежать у спектрі далеко один від одного, не утворюють проміжних відтінків. Білий колір є результатом поєднання всіх згаданих вище кольорів.

Звідси випливає, що звичайне світло — біле — являє собою поєднання променів усіх довжин хвиль, які випромінюють тіла, що світяться. Деякі тіла випромінюють світло різних частин спектра не в однаковій пропорції, і тому їхнє світло має певне забарвлення.

Згодом Ньютон пояснив різний колір деяких тіл зміною їхнього стану. Різні речовини по-різному відбивають й поглинають світло. Неоднакове забарвлення природних тіл пов'язане, на думку Ньютона, з різною здатністю тіл відбивати одні світлові промені більшою мірою, ніж інші.

Ньютон закінчує виклад своєї теорії вказівкою на субстанціальність світла: "Ми побачили, що причина кольорів пов'язана не з тілами, а зі світлом, тому ми маємо достатні підстави вважати світло субстанцією".

Однак Ньютон відмовляється від висунення фізичних гіпотез. "Не так легко, однак, з повною впевненістю й остаточно визначити, що таке світло, чому воно заломлюється і яким способом чи дією воно викликає в нашій уяві сприйняття кольорів; я не хочу тут змішувати здогадки з вірогідністю".

Однозначна, повна, цілком достовірна теорія світла з величезними труднощами формувалася як наочна фізична теорія. Тим часом Ньютон прагнув до абсолютної достовірності. Він ще не покінчив з кінетичними гіпотезами у фізиці, але вже закликає до строгого розмежування фізики принципів і фізики моделей.

Атомістичні погляди Ньютона

Теорія світла Ньютона ґрунтується на уявленні про існування дрібних корпускул, що створюють на сітківці ока відчуття світла. Найкрупніші частинки дають червоний колір, а найменші — фіолетовий. Закони оптики виводяться зі взаємодії між частинками матерії і світловими корпускулами. Переходячи з одного середовища в інше, частинки світла відхиляються внаслідок притягання: дрібні фіолетові — більшою мірою, а великі червоні — меншою.

У своїх атомістичних побудовах Ньютон не вдається до поняття абсолютно неподільних атомів, замінивши їх на корпускули як неподільні частинки. В "Оптиці" Ньютон стверджує, що корпускули тіла складаються з більш дрібних частин матерії, які, у свою чергу, складаються із ще більш дрібних дискретних елементів. При цьому він зауважує, що порожній простір зростає в міру дроблення частинок і відношення порожнього простору до заповненого зростає як ступінь, показник якого дорівнює порядку останніх дискретних частинок.

Якщо ми зупинимося на частинках шостого порядку, як це робить Ньютона, то порожній простір у 63 рази більший, ніж заповнений; якщо останні частинки п'ятнадцятого порядку, то порожнеча більше ніж у ЗО тисяч разів перевищує наповнену частину об'єму корпускул; якщо ж дроблення речовини продовжувати до нескінченності, то простір виявляється заповненим у нескінченно малій мірі.

Ця ідея нескінченної ієрархії дискретних частинок речовини була пов'язана з уявленням про єдність матерії. Ньютон не вірив в існування неподільних атомів й елементів, які не можуть перетворюватися один в інший. Навпроти, він припускав, що неподільність частинок і, відповідно, якісні відмінності між елементами є лише відносною межею, пов'язаною з історично обмеженими можливостями експериментальної техніки. Якщо розчленувати речовину на ці відносно неподільні частинки, то відбудеться звичайна хімічна реакція. Однак можна використовувати більш ефективний хімічний вплив і з його допомогою розчленувати частинки на більш дрібні дискретні елементи — на атоми другого порядку, причому виявиться єдність матерії й один елемент перетвориться на інший. Такі уявлення підтримували сподівання Ньютона на успіх його алхімічних дослідів.

Ньютон створює ієрархію дискретних частинок речовини. Перші поєднання — це найбільш міцні сполучення елементів металу, пов'язані найбільш могутніми силами взаємного притягання. Швидше всього, і ці перші елементи мають складну природу й подільність речовини є нескінченною. Другі поєднання складаються з перших поєднань, причому зв'язок тут набагато слабкіший, взаємне притягання не так міцно з'єднує між собою елементи поєднання, і цей зв'язок можна розірвати за допомогою звичайного хімічного впливу. Отже, єдність речовини й перетворення елементів можуть бути результатом більш енергійних впливів, які здатні розчленувати більш дрібні дискретні частини речовини. Таким чином, загальний принцип єдності матерії, що лежав в основі розвитку хімії, випливає в Ньютона з динамічних поглядів на структуру речовини, з уявлення про реальну ієрархію динамічних взаємодій, що пов'язують воєдино кожну дискретну частину матерії.

Слід підкреслити, що ні атомістичні моделі в "Оптиці" і в переписці, ні побічні фізичні посилання "Начал" не можуть претендувати на роль завершеної атомістичної картини світу.

Учення Ньютона про ефір

У полеміці з іуком Ньютон схематично окреслив деякі риси компромісної теорії, що поєднує хвильові й корпускулярні уявлення. Насамперед він указує, що теорія світлових корпускул ні в якому разі не повинна однозначно поєднуватися з відкритим ним законом поширення, заломлення й відбивання світла. Однак навіть ця теорія аж ніяк не виключає хвильових уявлень. Коливання ефіру, вважає Ньютон, необхідні для пояснення оптичних явищ навіть коли припустити існування світлових корпускул. Корпускули світла, потрапляючи поверхні, що мають здатність заломлювати чи відбивати, спричинюють коливання ефіру. Хвилі ефіру можуть мати різні довжини, і це дозволяє пояснити цілий ряд оптичних явищ.

Надалі Ньютон продовжував розвивати уявлення про витікання частинок, що спричинюють виникнення хвиль в ефірі. Він вважав, що в безповітряному просторі залишається деяке матеріальне середовище — ефір, надзвичайно розріджений, тонкий і пружний. Ефір пояснює різноманітні фізичні явища — магнітні, електричні і навіть тяжіння. Ньютон у суто картезіанському дусі описує різні найтонші флюїди, з яких складається ефір.

Електричне притягання й відштовхування пояснюється виділенням тонкого флюїду при терті. Зазначений флюїд, поширюючись навколо натертого скла, циркулює в різних напрямках і захоплює собою легкі тіла, повертаючись зрештою назад у скло і тут згущуючись. Притягання тіл до Землі пояснюється рухом іншого компонента ефіру. Гравітаційний флюїд проникає до поверхні пор речовини. Завдяки цьому Земля всмоктує ефір і згущує його у своїх порах. Тому ефір прагне повернутися назад до Землі і тягне за собою тіло. Він давить на це тіло пропорційно поверхні частинок. У надрах Землі відбуваються складні реакції, що перетворюють ефір на звичайну речовину і, у свою чергу, виробляють ефір з інших речовин. Ефір входить у тіло таким чином, що щільність його в глибині тіл менша, ніж на їхній поверхні. Поширення світла пов'язане з коливанням ефіру. Подібними ж гіпотетичними моделями Ньютон пояснює заломлення й відбивання світла, кольори вузьких смуг спектра й т.д. Коливання ефіру підтримують рух частинок під час процесів бродіння, гниття й горіння речовин. Для того, щоб примусити свої м'язи скоротитися, людина стискає ефір, який їх наповнює. У цьому процесі бере участь ще один інгредієнт ефіру — "тваринний флюїд".

Протягом наступних років Ньютон продовжував конкретизувати гіпотезу ефіру. Він припускав, що весь простір заповнений ефіром, який може стискатися й розширюватися і має дуже велику пружність. Далі припускалося, що ефір проникає в тіла через їхні пори, причому чим тонші пори, тим розрідженіший ефір, що наповнює ці тіла. Проникненням ефіру в пори Ньютон пояснює відштовхування й притягання тіл, незмочуваність деяких тіл, тяжіння.

Протягом життя Ньютон висловив цілий ряд суперечливих ідей, пов'язаних з ефіром. С. І. Вавілов пояснює ці суперечності тим, що Ньютон у першу чергу описує емпіричні властивості світла, а потім намагається довести, що деякі з них можуть бути витлумачені за допомогою ефіру, далі демонструє протиріччя між іншими властивостями світла й існуванням ефіру і, нарешті, зупиняється на динамічному трактуванні фізичних процесів без будь-яких кінетичних гіпотез.

Очевидно, Ньютон розумів, що без кінетичних моделей ефіру не можна предметно розмірковувати про світло, електрику й тяжіння, але в той же час остерігався пов'язувати з гіпотезою ефіру свої механічні й оптичні закони, які він вважав абсолютними, безперечними й такими, що безпосередньо випливають з чистого досвіду. Під впливом дуже різних чинників у фізиці Ньютона й у фізичних передумовах його механіки ідея порожнього простору відігравала більш важливу роль, ніж протилежна ідея — матеріального середовища, завдяки якому відбувається взаємодія тіл. У роботах з оптики й, взагалі, у дослідженнях, пов'язаних з експериментами, Ньютон найчастіше звертається до уявлення про ефір, але в його математичних, механічних та астрономічних побудовах простір трактується як порожнеча,

В "Оптиці" Ньютон називає простір "умістилищем Бога". Ця містична концепція була довільним догматичним абсолютизуванням умовної абстракції порожнього простору та дії через порожнечу.

Складні й часто суперечливі ідеї Ньютона щодо ефіру й порожнечі приводять його зрештою до практичного заперечення ролі ефіру в однозначній


Сторінки: 1 2 3